

2.1A charge, 2.4A Boost, integrated TYPE_C protocol,

Power Bank SOC

1 Features

- Switch buck charger and boost
 - 2.1A Synchronous switching charger and 5V 2.4A boost converter
 - ♦ Boost converter efficiency up to 93%
 - ♦ Switching charger efficiency up to 92%
 - Integrated power-path management, charging batteries and charging cellphones at the same time

Charger

- Adaptive charging current control, excellent adapter compatibility
- \diamond 2.1A charging
- \diamond Support 4.20/4.35/4.40V batteries
- ♦ Support battery temperature NTC comparison

• State of charge (SOC) indicator

- ♦ Integrated LED controller supports 4/3/2/1 LEDs as the SOC indicator
- ♦ The battery power curve can be set, and the display light is more uniform

• Fully featured

- ♦ Automatically detect phone insertion and removal
- Integrated TYPE-CDRP protocol, supports single-port input and output
- ♦ Support load high current line compensation function
- Low power
 - Smart load detector, switching to standby mode automatically
 - \diamond <100 µA standby current

Ultra simplified BOM

- ♦ Integrated power FET, charging/boosting with a single inductor
- Multiple protections, high reliability
 - Output over-current, over-voltage, short-circuit protection
 - Input over-voltage, over-current, battery over-charge, over-drain, over-current protection

- ♦ Thermal Shutdown, battery temperature NTC protection
 ♦ ESD 4KV
- Deep customization
 - ♦ I2C interface, flexible and low-cost customized solutions

2 Applications

- Power bank, Portable Charger
- Mobile Phones, Smart Phones, Handheld Devices, Portable Media Player, Tablet

3 Description

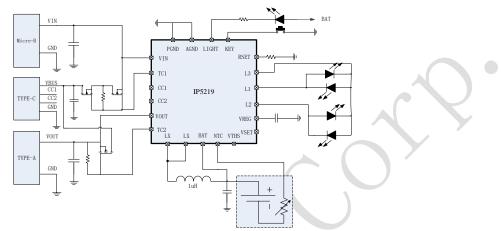
IP5219 is a multi-function power management SOC with integrated boost converter, lithium battery charge management, battery power indication and TYPE_C protocol, providing a complete power solution for mobile power.

IP5219's high degree of integration and rich functions make it only require very few peripheral devices in application, and effectively reduce the size of the overall solution and reduce BOM cost.

IP5219 requires only one inductor to implement buck and boost functions, which can support low-cost inductors and capacitors.

IP5219's synchronous boost system provides a full 2.4A output current with a conversion efficiency as high as 93%. When no-load, it automatically enters the sleep state, and the quiescent current drops to 100uA.

IP5219 uses switch charging technology to provide a maximum current of 2.1A, and the



charging efficiency is as high as 92%. Built-in IC temperature and input voltage intelligently adjust the charging current.

IP5219 supports custom I2C interface to read chip information (custom model

IP5219_12C), can customize battery power curve, and can accurately display battery power. Support 1/2/3/4 LED power display and lighting function

IP5219 in QFN24 package

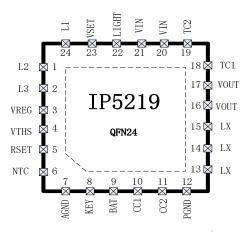


Figure1 Simplified application schematic (4LED indicates power)

4 Pin Definition

Figure2 IP5219 pin diagram

pin		Descriptions
Index	name	
1	L2/SDA	Battery indicator pin2,I2C function is SDA
2	L3	Battery indicator pin2
3	VREG	Chip 3.1V voltage output
4	VTHS	Battery OCV select
5	RSET	Battery resistance select
6	NTC	NTC pin
7	AGND	Analog gnd
8	КЕҮ	Key input pin
9	BAT	Battery voltage sense pin
10	CC1	TYPE-C detection pin CC1
11	CC2	TYPE-C detection pin CC2
12	PGND	Power gound
13、14、15	LX	DCDC switch node, connect inductor
16、17	VOUT	DCDC 5v OUTPUT pin
18	TC1	VBUS charge input PMOS control pin.
19	TC2	VBUS charge input PMOS control pin.
20、21	VIN	Charger 5V input pin
22	LIGHT	LED lighting driver, Open-drain output.
23	VSET	Battery voltage select
24	L1/SCK	Battery indicator pin1, I2C function is SCK
25(EPAD)	GND	EPAD, should be connected to GND

5 The PartList of PowerBank SOC

				Main Feature								
PartNum	charger	Boost	LEDs	Torch	КЕҮ	12C	DCP	USB C	Quick Charge	PD3.0 /PPS	Package	
IP5303T	1.0A	1.2A	1,2	√	√	-	-	-	-	-	ESOP8	
IP5305T	1.0A	1.2A	1,2,3,4	\checkmark	~	-	-	-	-	-	ESOP8	z
IP5306	2.4A	2.1A	1,2,3,4	\checkmark	~	√	-	-	-	-	ESOP8	PIN2PIN
IP5306H	2.4A	2.1A	1,2,3,4	\checkmark	~	~	-	-	-	-	ESOP8	PIN
IP5406T	2.4A	2.1A	1,2,4	\checkmark	~	-	-	-	-	-	ESOP8	
IP5407	2.4A	2.1A	1,2,4	\checkmark	~	-	-	-	-	-	ESOP8	
IP5207	1.2A	1.2A	3,4,5	\checkmark	~	-	\checkmark	-	-	-	QFN24	z
IP5209	2.4A	2.1A	3,4,5	\checkmark	~	\checkmark	\checkmark	-	-	-	QFN24	PIN2PIN
IP5209U	2.4A	2.1A	3,4,5	\checkmark	~	\checkmark	\checkmark	-	-	-	QFN24	PIN
IP5207T	1.2A	1.2A	1,2,3,4	\checkmark	~	\checkmark	\checkmark	-	-	-	QFN24	z
IP5189T	2.1A	2.1A	1,2,3,4	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	QFN24	PIN2PIN
IP5189TH	2.1A	2.1A	1,2,3,4	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	QFN24	PIN
IP5310	3.1A	3.0A	1,2,3,4	\checkmark	~	\checkmark	\checkmark	\checkmark	-	-	QFN32	
IP5506	2.4A	2.1A	nixie tube	\checkmark	~	-	-	-	-	-	ESOP16	
IP5508	2.4A	2.1A	nixie tube	\checkmark	~	-	\checkmark	-	-	-	QFN32	
IP5330	3.1A	3.0A	nixie tube	\checkmark	~	-	\checkmark	\checkmark	-	-	QFN32	
IP5566	3.1A	3.0A	1,2,3,4	\checkmark	~	-	\checkmark	√	-	-	QFN40	
IP5322P	18W	4.0A	1,2,3,4	\checkmark	\checkmark	\checkmark	\checkmark	-	~	-	QFN32	
IP5332	18W	4.0A	1,2,3,4	\checkmark	~	\checkmark	\checkmark	\checkmark	~	\checkmark	QFN32	
IP5328P	18W	4.0A	1,2,3,4	\checkmark	~	\checkmark	\checkmark	~	~	~	QFN40	
IP5356	22.5W	5.0A	nixie tube	\checkmark	~	-	\checkmark	\checkmark	~	\checkmark	QFN40	
IP5358	22.5W	5.0A	nixie tube	\checkmark	\checkmark	-	\checkmark	\checkmark	√	\checkmark	QFN48	
IP5568	22.5W	5.0A	nixie tube	\checkmark	\checkmark	-	\checkmark	\checkmark	~	\checkmark	QFN64	

6 Absolute Maximum Ratings

Parameter	symbol	MIN	Typical
Port input voltage range	V _{IN}	-0.3 ~ 6	V
Operating free-air temperature	T.	-40 ~ 150	ĉ
range	Tj	-40 ~ 100	C
Junction temperature	Tstg	-60 ~ 150	C
Storage temperature	θ_{JA}	40	ଂC /W
Thermal resistance (from junction	ESD		κv
to ambient air)	L3D	4	Γ\V

* Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7 Recommended Operation Conditions

Parameter	symbol	MIN	Typical	МАХ	Unit
Input voltage	V _{IN}	4.75	5	5.5	V
Load current		0	2.4		А

*Beyond these operation conditions, the device's performance will not be guaranteed.

8 Electrical Characteristics

Parameter	symbol	Test condition	MIN	ТҮР	MAX	Unit
Charger system						
Input voltage	V _{IN}		4.65	5	5.5	V
Target charge voltage	V _{trgt}		4.16	4.2	4.24	V
Charge current	I _{CHRG}	BAT current.		2.1	2.4	А
Trickle charge current	I _{TRKL}	VIN=5v, BAT=2.7v		250		mA

Trickle charge						
stop voltage	V_{TRKL}		2.9	3	3.1	V
Recharge	M		4 0 9	4.4	4 1 2	V
threshold	V_{RCH}		4.08	4.1	4.13	V
Charger safety	T _{END}		20	24	27	Hour
timer	I END		20	24	21	Houi
Input						
under-voltage	V_{UVLO}	Rising voltage	4.4	4.5	4.6	V
protection						
Input						
under-voltage	V _{UVLO}			200		mV
protection	• UVLO			200		
hysteresis						
Boost system						
Battery operation voltage	V_{BAT}		3.0		4.4	V
DC-DC output		VBAT=3.7V @0A	5.0	5.12	5.25	V
voltage	V _{OUT}	VBAT=3.7V @2.1A	4.75	5	5.15	V
Output voltage ripple	ΔV _{OUT}	VBAT=3.7V, VOUT=5.0V, fs=500KHz	50	100	150	mV
Boost output	I _{vout}			2.4		А
current	vout			2.7		~
Boost system						
overcurrent		, Y	2.65	3.05	3.4	А
shutdown			2.00	0.00	0.4	~
current						
Load over-current		Output voltage continuously lower than				
detect timer	T _{UVD}	4.4V		30		ms
Load short-circuit		Output current continuously larger than				
detect timer	T _{OCD}	3.5A	150		200	us
Control system						
Switching		Boost Switching frequency	450	500	550	KHz
frequency	fs	Charge Switching frequency	650	700	750	KHz
PMOS on						
resistance			30	35	40	mΩ
NMOS on	r _{DSON}					
resistance			25	30	35	mΩ
VREG output	\ <i>\</i>	VPAT 2 5V		2.4		
voltage.	V_{REG}	VBAT=3.5V		3.1		V

Battery input standby current	I _{STB}	VIN=0V, VBAT=3.7V	45	75	100	uA
LDO output current.	I _{LDO}		5	5	10	mA
LED lighting drive current	llight		20	30	40	mA
LED displays drive current.	I _{L1} I _{L2} I _{L3}		1	10	20	mA
Load removal detect timer	T _{loadD}	Load current continuously lower than 45mA	25	32	44	S
Push-button wake-up timer	T _{OnDebounce}		30	50	500	ms
Push-button light-on timer	T _{Keylight}		1.2	2	3	S
Thermal shutdown	T _{OTP}	Rising temperature	110	125	140	°C
Thermal shutdown hysteresis	ΔT _{OTP}			40		°C

9 Functional Description

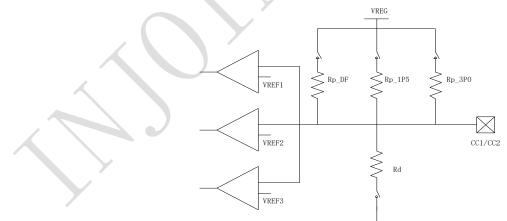
BOOST

IP5219 integrates a step-up DCDC converter with an output of 5V and a load capacity of 2.4A. Switching frequency is 500KHz, 3.7V input, 5V / 2A efficiency is 92%. Built-in soft-start function to prevent malfunction caused by excessive inrush current during start-up. Integrated output over-current, short-circuit, over-voltage, over-temperature protection functions to ensure stable and reliable operation of the system .

The output current of the boost system can be automatically adjusted with the temperature to ensure that the IC temperature is below the set temperature.

Charge

IP5219 has a constant current, constant voltage lithium battery charger with a synchronous switch structure. When the battery voltage is less than 3V, 100mA trickle charging is used; when the battery voltage is greater than 3V, it enters constant current charging; when the battery voltage is greater than 4.2V, it enters constant voltage charging. After the charging is completed, if the battery voltage is lower than 4.1V, restart the battery charging.


Adaptive power path management, giving priority to external loads, and supporting charging and discharging.

The IP5219 charger will automatically adjust the charging current to adapt to adapters with different load capabilities, ensuring that the adapter is not pulled.

TYPE-C

IP5219 integrates TYPE-CDRP input and output recognition interface, automatically switches the built-in pull-up resistor, and automatically recognizes the charge and Boost properties of the inserted device. With Try.SRC function, when connected to the other party as a DRP device, the other party can be charged first.

When working as a DFP, the external output can be set to the current capacity information of Default, 1.5A, 3A (three choices 1, default); when working as a UFP, the output current capacity of

the other party can be identified.

Pull-up resistor value and pull-down resistor value

Resistance name	Resistance Value
Rp_DF	33k
Rp_1P5	11k
Rp_3P0	4.2k
Rd	5.1K

Comparator threshold with pullup resistor Rp enabled

Table 4-21 CC Voltages on Source Side – Default USB

	Minimum Voltage	Maximum Voltage	Threshold			
Powered cable/adapter (vRa)	0.00 V	0.15 V	0.20 V			
Sink (vRd)	0.25 V	1.50 V	1.60 V			
No connect (vOPEN)	1.65 V					

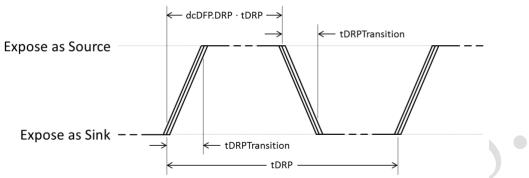
Table 4-22 CC Voltages on Source Side - 1.5 A @ 5 V

	Minimum Voltage	Maximum Voltage	Threshold
Powered cable/adapter (vRa)	0.00 V	0.35 V	0.40 V
Sink (vRd)	0.45 V	1.50 V	1.60 V
No connect (vOPEN)	1.65 V		

Table 4-23 CC Voltages on Source Side – 3.0 A @ 5 V

	Minimum Voltage	Maximum Voltage	Threshold
Powered cable/adapter (vRa)	0.00 V	0.75 V	0.80 V
Sink (vRd)	0.85 V	2.45 V	2.60 V
No connect (vOPEN)	2.75 V		

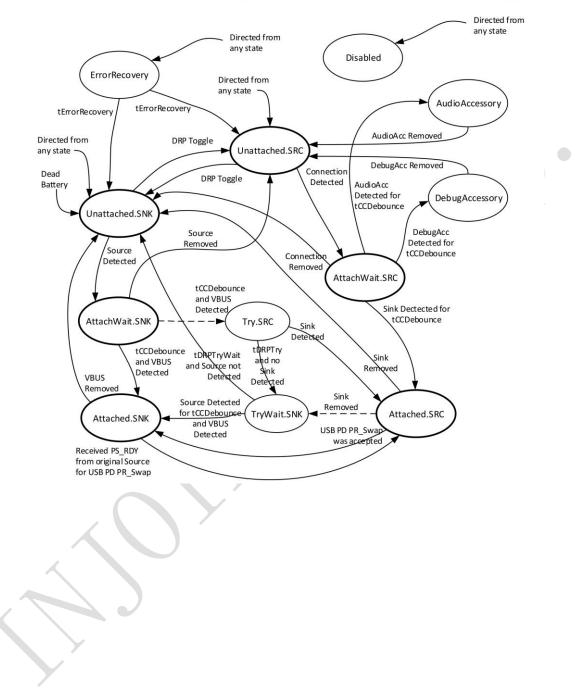
Comparator threshold with pull-down resistor Rd enabled


Table 4-25 Voltage on Sink CC pins (Multiple Source Current Advertisements)

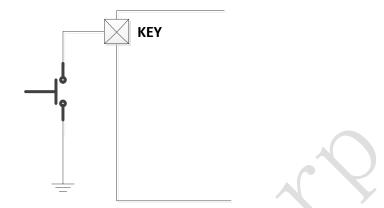
Detection	Min voltage	Max voltage	Threshold
vRa	-0.25 V	0.15 V	0.2 V
vRd-Connect	0.25 V	2.04 V	
vRd-USB	0.25 V	0.61 V	0.66 V
vRd-1.5	0.70 V	1.16 V	1.23 V
vRd-3.0	1.31 V	2.04 V	

TYPE-C detection cycle

Figure 4-36 DRP Timing

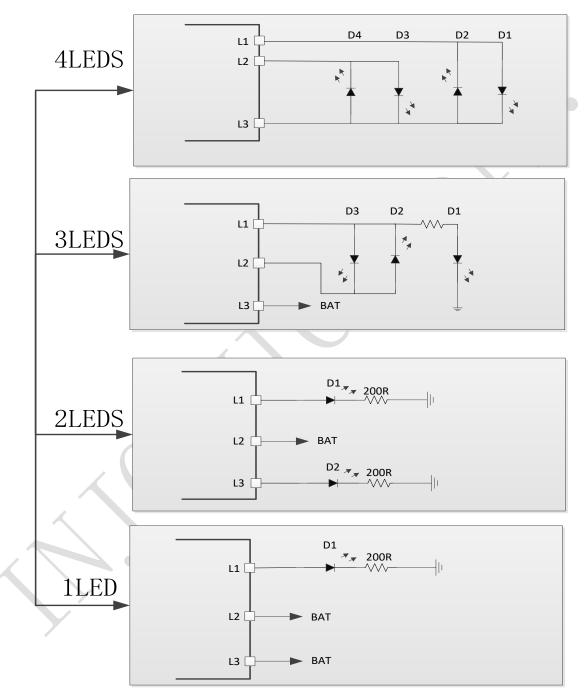


	Minimum	Maximum	Description
tDRP	50 ms	100 ms	The period a DRP shall complete a Source to Sink and back advertisement
dcSRC.DRP	30%	70%	The percent of time that a DRP shall advertise Source during tDRP
tDRPTransition	0 ms	1 ms	The time a DRP shall complete transitions between Source and Sink roles during role resolution
tDRPTry	75 ms	150 ms	Wait time associated with the <u>Try.SRC</u> state.
tDRPTryWait	400 ms	800 ms	Wait time associated with the <u>TryWait.SNK</u> state



TYPE-C detection state transition

Figure3 KEY


The key connection method is shown in Figure3, which can recognize long and short push operations.

- If button is pushed longer than 30ms but shorter than 2s, IP5219 will identify the action as short push. Short push will open SOC indicator LEDs and step-up converter
- If button is pushed longer than 2s, IP5219 will identify the action as long push. Long push will open or close flashlight LED.
- If button is pushed shorter than 30ms, IP5219 will ignore the action.
- If two short push is detected within 1s, IP5219 will close step-up convertor, SOC indicator LED and flashlight LED.

State Of Charge (SOC) indication

4 LEDs mode

Discharging mode, 4 LEDs as the indicator

D1	D2	D3	D4
ON	ON	ON	ON
ON	ON	ON	OFF
ON	ON	OFF	OFF
ON	OFF	OFF	OFF
1Hz blink	OFF	OFF	OFF
Ds as the ind	dicator		
D1	D2	D3	D4
ON	ON	ON	ON
ON	ON	ON	0.5Hz blink
ON	ON	0.5Hz blink	OFF
ON	0.5Hz blink	OFF	OFF
0.5Hz blink	OFF	OFF	OFF
	ON ON ON 1Hz blink Ds as the ind D1 ON ON ON ON	ONONONONONONONONONOFF1Hz blinkOFFD1D2ONONONONONONONONONONONONON0.5Hz blink	ONONONONONONONONONONONOFFONOFFOFF1Hz blinkOFFOFFD1D2D3ONONONONONONONONONONONONONONOFF

3 LEDs mode

The displays of 3 LEDs is similar to that of 4 LEDs. The corresponding SOC of each LED is presented in the following table.

	D1	D2	D3	D4
3 LEDs	3%	66%	100%	NA
4 LEDs	25%	50%	75%	100%

2 LEDs mode

	state	D1	D2
Charging	arging In charging		OFF
	End of Charge	ON	OFF
Boost	In discharging	OFF	ON
	Low Battery	OFF	blink

1 LED mode

	state	D1
Charging	In charging	blink
	End of Charge	ON
Boost	In discharging	ON
	Low Battery	blink

Battery impendence setting

IP5219 can set the battery impendence by RSET pin which make the SOC indicator LEDs display more evenly. The relationships between the resistance connected to RSET and battery impendence are shown in the following table.

RSET resistance(Kohm)	Battery impendence (mOhm)
10K	45
43K	67.5
120K	112.5
200К	90
NC	22.5

Automatic cellphone plug-in detect

IP5219 can automatically detect the cellphone's plug-in. When detecting the plug-in, IP5219 will wake up from standby mode and open the 5V step-up converter without push button action. IP5219 supports modules without push buttons.

Battery voltage selection

IP5219 can support different batteries by changing the connecting of VSET PIN. When VSET is floating, 4.2V battery is set . When VSET is connected to GND, 4.35V battery is set. When VSET is connected to VREG, 4.4V battery is set.

Battery platform selection

IP5219 can set the battery platform through the VTHS pin. When VTHS is connected to VREG, it is set to a high platform 3.7V battery; when VSET is connected to GND, it is set to a low platform 3.6V battery.

NTC

IP5219 integrated NTC, and can detect battery pack temperature.

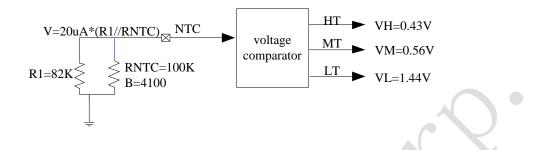


Figure5 Battery NTC comparison

Charge:

If NTC pin voltage>1.44V, it indicate the battery temperature is below -10 ° C, charger is stopped. If NTC pin voltage<0.56V, it indicate the battery temperature is higher 45 ° C, half charging current is used. If NTC pin voltage<0.43V, it indicate the battery temperature is higher 55 ° C, charger is stopped.

Discharge:

If NTC pin voltage>1.44V, it indicate the battery temperature is below -10 $^{\circ}$ C, Output will be shutoff. If NTC pin voltage<0.43V, it indicate the battery temperature is higher 55 $^{\circ}$ C, Output will be shutoff.

If NTC function is not needed, the NTC pin should connect a 51K resistor to GND. The NTC pin cannot float otherwise may lead to abnormal.

Flash Light

IP5219 has an integrated MOS FET. LIGHT PIN in IP5219 can drive lighting LED directly. Maximum driving current is 100mA. When button is pushed longer than 2s, lighting LED is opened or closed. If flash light is not needed, light should connect to GND, IP5219 will automatically close flash light.

VREG

VREG is an 3.1V LDO with 5mA load capacity.

10 Typical Application Schematic

IP5219 only needs capacitors, resistors, and inductors to realize a full featured power bank solution.

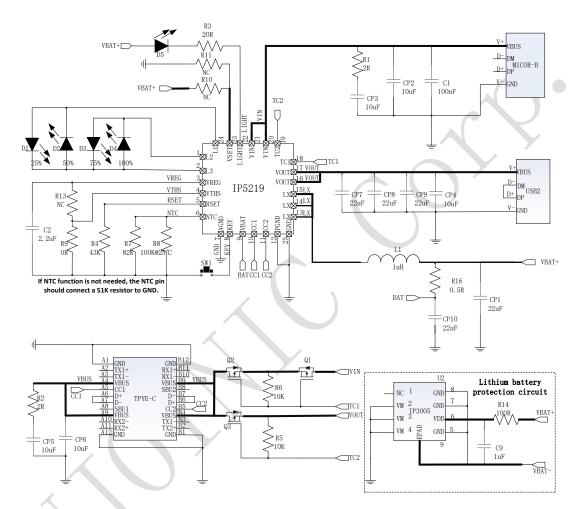
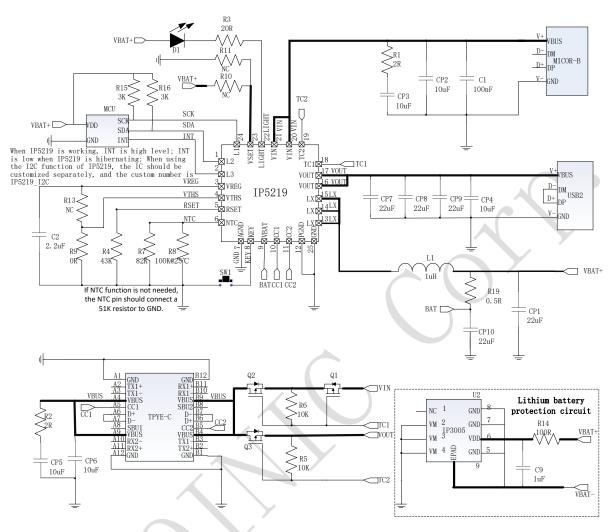
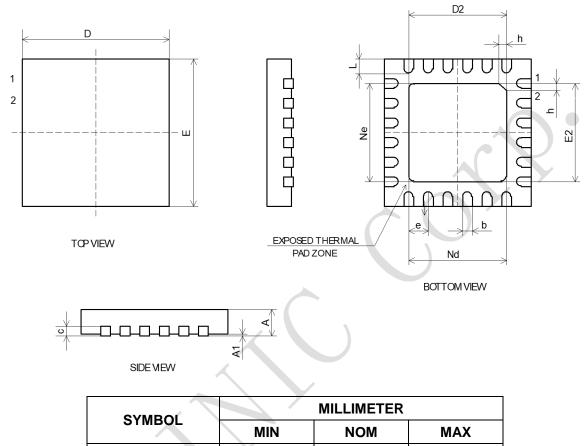



Figure6 4 LEDS power display typical application schematic

Figure7 I2C typical application schematic

Inductor recommends: SPM70701R0


DARFON PIN	Inductance (uH)	Tolerance	Tolerance (mΩ) Typ. Max.		Heat Rating Current DC Amp.	Saturation Current DC Amps.	Measuring Condition
					ldc(A)Max.	Isat(A)Max.	
SPM70701R0	1.0	±20%	8.5	8	12	15	

Battery protection recommends:

INJOINIC	Pack age	Overcharge Detection Voltage [VCU] (V)	OverBoost Detection Volt age [VDL] (V)	Overcurrent Detection Current [IOV] (A)
IP3005A	ESOP8	4.28V	2.5V	7A

11 Package Information

	OTMEDE	MIN	NOM	MAX		
	A	0.70	0.75	0.80		
	A1	-	0.02	0.05		
	b	0.18	0.25	0.30		
	С	0.18	0.20	0.25		
\backslash	D	3.90	4.00	4.10		
	D2	2.40	2.50	2.60		
	e	0.50BSC				
)	Ne	2.50BSC				
	Nd	2.50BSC				
	E	3.90	4.00	4.10		
	E2	2.40	2.50	2.60		
	L	0.35	0.40	0.45		
	h	0.30	0.35	0.40		

12 IMPORTANT NOTICE

INJOINIC TECHNOLOGY and its subsidiaries reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to INJOINIC TECHNOLOGY's terms and conditions of sale supplied at the time of order acknowledgment.

INJOINIC TECHNOLOGY assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using INJOINIC TECHNOLOGY's components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of INJOINIC TECHNOLOGY's components in its applications, notwithstanding any applications-related information or support that may be provided by INJOINIC TECHNOLOGY. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify INJOINIC TECHNOLOGY and its representatives against any damages arising out of the use of any INJOINIC TECHNOLOGY's components in safety-critical applications.

Reproduction of significant portions of INJOINIC TECHNOLOGY's information in INJOINIC TECHNOLOGY's data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. INJOINIC TECHNOLOGY is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

INJOINIC TECHNOLOGY will update this document from time to time. The actual parameters of the product may vary due to different models or other items. This document voids all express and any implied warranties.

Resale of INJOINIC TECHNOLOGY's components or services with statements different from or beyond the parameters stated by INJOINIC TECHNOLOGY for that component or service voids all express and any implied warranties for the associated INJOINIC TECHNOLOGY's component or service and is an unfair and deceptive business practice. INJOINIC TECHNOLOGY is not responsible or liable for any such statements.