

2A Charging / 2.4A Discharging Power Bank SOC With Integrated Digital Tube

Drive

1. Features

- Switch buck charger and boost
 - ♦ 2.4A synchronous boost conversion
 - ♦ Up to 93% boost efficiency
 - ♦ Up to 92% charging efficiency
 - Built-in power path management supports charging and discharging at the same time
 - ♦ Supports line compensation

Charge

- Adjusts charging current automatically to adapt to different load capacity adapters
- ♦ 2A synchronous switch charging
- ♦ Supports 4.20V, 4.30V, 4.35V and 4.4V batteries

Battery indicator

- Built-in 14bitsADC and accurate coulomb calculation method
- Support 5/4/3/2/1 LED power or digital tube display
- Support digital tube display, 1A/2A output port identification
- ♦ Supports self calibration of battery capacity

• Feature-rich

- ♦ Built-in illuminator driver
- Automatically load insertion and removal detection

• Low-power dissipation

- Intelligently identify the load and automatically enter standby
- Simplified BOM
 - Built-in power MOS, 1uH single inductor to achieve charge and discharge
 - ♦ Built-in various digital tube drive circuits
- Multiple protection, high reliability

- Output over current, over voltage and short circuit protection
- ♦ Input over voltage protection
- Battery over charge, over discharge and over current protection
- ♦ Over temperature protection
- \diamond ESD 4KV ,Vin transient withstand up to 18V
- In-depth customization
 Flexible and low-cost customized program
- Package: QNF32 5mm*5mm

2. Applications

- Power Bank
- Mobile phones, tablets and other portable devices
- Hydrator/hand warmer

3. Description

IP5508 is a multi-functional power management SOC for total solution on Power Bank. It also integrates with boost converter, lithium battery charging management and battery level indicators.

IP5508 is highly integrated with abundant functions, which makes the total solution size minimized and BOM costed down.

IP5508 requires only one inductor to achieve buck and boost functions, DC-DC converter works at 500KHz and can support low-cost inductors and capacitors.

The synchronous boost system of IP5508 provides rated 2.4A output current with conversion efficiency up to 93%. When there is no load, it will automatically enter the standby state, and the static current will drop to less than 100uA.

IP5508's switch charging system supplies 2A charging current with charging efficiency up to 92%. According to the IC temperature and input voltage, IP5508 can intelligently adjust charging current.

IP5508 contains 14bits ADC, which can accurately measure battery's voltage and current. The built-in coulomb meter algorithm of IP5508 can accurately obtain the battery power information.

IP5508 can support digital tube display and illuminator function.

The package of IP5508 is QNF32.

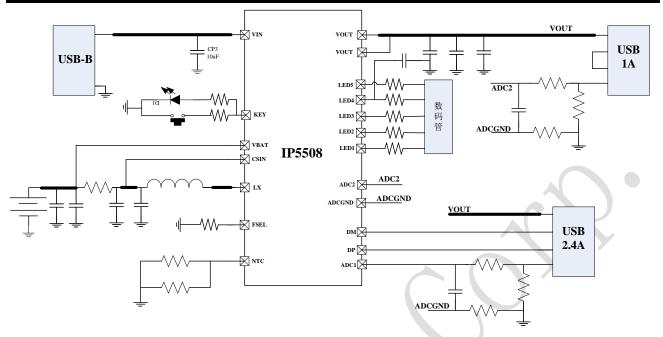
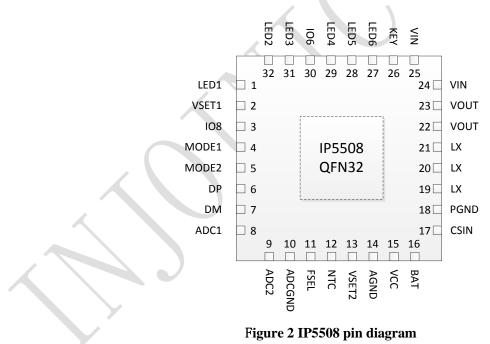



Figure 1 IP5508 simplified application schematic diagram (digital tube displays power)

PIN		description			
PIN NUM	PIN				
	Name				
1	LED1	digital tube/LED driver pin1			
2	VSET1	Full battery voltage setting pin1			
3、	108	ordinary GPIO pin			
4、	MODE1	key mode selection pin1			
5	MODE2	key mode selection pin2			
6	DP	DCP function pin			
7	DM	DCP function pin			
8	ADC1	ADC1 input			
9	ADC2	ADC2 input			
10	ADCGND	System GND			
11	FSEL	Initial battery setting pin			
12	NTC	NTC funtiaon pin			
13	VSET2	Full battery voltage setting pin2			
14	AGND	System GND			
15	VCC	LDO 3.1V Output			
16	BAT	Battery voltage sampling pin			
17	CSIN	System power and bat voltage sampling pin			
18	PGND	Power GND			
19	LX	DCDC switch node, connect inductance			
20	LX	DCDC switch node, connect inductance			
21	LX	DCDC switch node, connect inductance			
22	VOUT	DC-DC 5V boost output pin			
23	VOUT	DC-DC 5V boost output pin			
24	VIN	DC-DC 5V charge input pin			
25	VIN	DC-DC 5V charge input pin			
26	KEY	Key and WLED pin			
27	LED6	digital tube/LED driver pin6			
28	LED5	digital tube/LED driver pin5			
29	LED4	digital tube/LED driver pin4			
30	106	ordinary GPIO pin			
31	LED3	digital tube/LED driver pin3			
32	LED2	digital tube/LED driver pin2			
33	EPAD/PGND	Power and dissipation ground, maintain good contact with GND			

 $\boldsymbol{\checkmark}$

5. IP Series Products List

	Cha /Disch	-		Features						Pack	age	
IC Part No.	Dis- charge	Charge	LED Num	Lighti ng	Keys	I2C	DCP	USB C	QC Certifi cate	PD3.0/ PPS	Package	Compa tibility
IP5303	1.0A	1.2A	1,2	٧	٧	-	-	-	-	-	eSOP8	z
IP5305	1.0A	1.2A	1,2,3,4	٧	٧	-	-	-	-	-	eSOP8	PINZPIN
IP5306	2.4A	2.1A	1,2,3,4	٧	٧	-	-	-	-		eSOP8	Ы
IP5206	2A(Max)	1.5A	3,4,5	٧	٧	-	-	-	-		eSOP16	z
IP5108E	2.0A	1.0A	3,4,5	٧	٧	-	-	-		-	eSOP16	PIN2PIN
IP5108	2.0A	2.0A	3,4,5	٧	٧	٧	-	ŀ	-	-	eSOP16	Id
IP5207	1.2A	1.2A	3,4,5	٧	٧	-	-	-		J-	QFN24	
IP5207T	1.2A	1.2A	1,2,3,4	٧	٧	٧	٧	-	-	-	QFN24	PINZPIN
IP5109	2.1A	2.1A	3,4,5	٧	٧	٧	-			-	QFN24	PIN2
IP5209	2.4A	2.1A	3,4,5	٧	٧	V	٧	-	-	-	QFN24	
IP5219	2.4A	2.1A	1,2,3,4	٧	٧	V	٧	٧	-	-	QFN24	
IP5310	3.1A	3.0A	1,2,3,4	٧	V	V	٧	٧	-	-	QFN32	
IP5506	2.1A	2.4A	Digital tube	v	٧	-		-	-	-	eSOP16	
IP5508	2.1A	2.4A	Digital tube	V	v	<u> </u>	٧	-	-	-	QFN32	
IP5330	3.1A	3A	Digital tube	v	V	-	٧	v	-	-	QFN32	
IP5322	18W	4.0A	1,2,3,4	٧	٧	٧	٧	-	٧	-	QFN32	
IP5328P	18W	4.0A	1,2,3,4	٧	٧	٧	٧	V	٧	v	QFN40	

6. Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Input Voltage Range	V _{IN}	-0.3 ~ 12	V
Junction Temperature Range	TJ	-40 ~ 150	°C
Storage Temperature Range	Tstg	-60 ~ 150	°C
Thermal resistance (from junction to ambient air)	θ_{JA}	40	°C /W
ESD (Human Body Model)	ESD	4	KV

*Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to Absolute Maximum Rated conditions for extended periods may affect device reliability. *Voltages are referenced to GND unless otherwise noted.

7. Recommended Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit
Input Voltage	V_{IN} , V_{BUS}	4.5	5	5.8	V
Operating Temperature	T _A	0		70	°C

*Devices' performance cannot be guaranteed when working beyond those Recommended Operating Conditions.

8 Electrical Characteristics

Unless otherwise specified, TA=25 $^\circ\!\mathrm{C}$, L=1uH

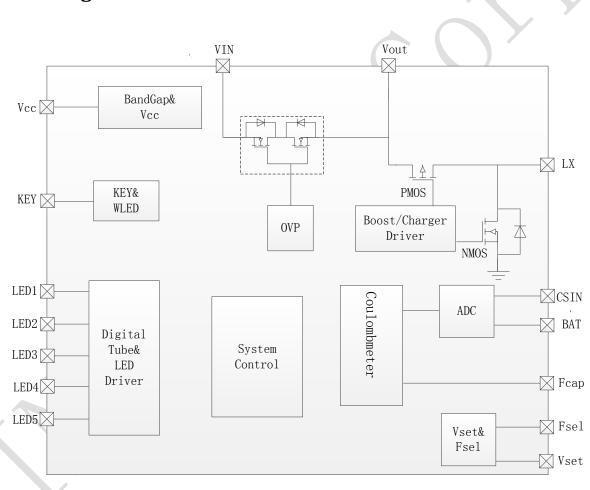
Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
充电系统						
Input Voltage	V _{IN}	VBAT=3.7V	4.5	5	5.8	V
Input Over Voltage	V _{INOV}		5.6	5.8	6	V
Input Under Voltage	V _{INUV}		4.4	4.5	4.6	V
	CV _{4.2V}	VSET[2:1]=2b00	4.18	4.21	4.24	V
Constant Charge	CV _{4.30V}	VSET[2:1]=2b01	4.28	4.31	4.34	V
Voltage	CV _{4.35V}	VSET[2:1]=2b10	4.33	4.36	4.4	V
	CV _{4.4V}	VSET[2:1]=2b11	4.38	4.41	4.44	V
Charge Stop Current	Ivin _{stop}	Input voltage =5V	200	300	500	mA
Charge Current		VIN Port charging current input terminal current, VBAT=3.7V	1.7	2	2.3	А
Trickle Charge Stop Voltage	I _{trkl}	VIN=5v,BAT=2.7v	100	200	300	mA
Trickle Charge Stop Voltage	V _{TRKL}		2.9	3	3.1	V
Recharge Voltage Threshold	V _{RCH}		4.07	4.1	4.13	V
Charge Cut-Off Time	T _{END}		20	24	28	Hour
Boost System						•
Battery Operation Voltage	V_{BAT}		3	3.7	4.4	V
Low Power Shutdown Voltage	V _{BATLOW}	IOUT=2A	2.9	2.95	3.0	V
Battery input	I _{BAT}	VBAT=3.7V, VOUT=5.1V,fs=500KHz		2	6	mA

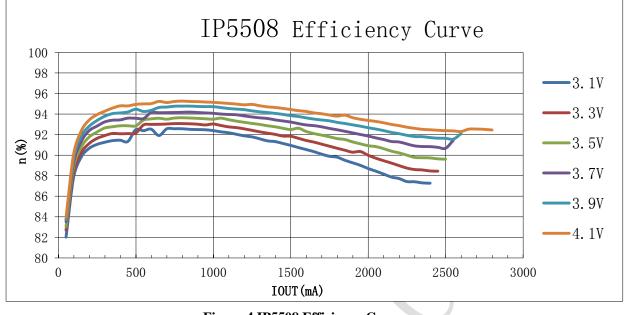
current		(no digital tube, no LED display, Vout				
		no load)				
DC Output Voltage	V _{OUT}	VBAT=3.7V @0A	5.0	5.12	5.25	V
De Output Voltage	V OUT	VBAT=3.7V @2.4A	4.85	5	5.35	V
Output Voltage Ripple	ΔV_{OUT}	VBAT=3.0V~4.4V	50	100	150	mV
Boost Output Current	I _{vout}	VBAT=3.0V~4.4V	0		2.4	А
Boost Overcurrent Shut Down Threshold	I _{vout}	VBAT=3.0V~4.4V	2.45	2.8	3.2	А
Load Overcurrent Detect Time	T _{UVD}	The output voltage is continuously below 4.2V		30		ms
Control System						
	6	Boost Switching frequency	450	500	550	KHz
Switch Frequency	fs	Charge Switching frequency	450	500	550	KHz
PMOS On				40		mΩ
Resistance						
NMOS On				35		mΩ
Resistance	r _{DSON}					
VOUT and VIN				00		
PMOS On Resistance		VIN=5V		90		mΩ
Vout Pmos Overcurrent	IIDOCP	VIN=5V		3		А
VCC voltage	VCC	Vbat=3.7V	3.05	3.1	3.15	V
Battery Input Standby Current	I _{STB}	VIN=0V,VBAT=3.7V		80	120	uA
LED Light Driving Current	llight		5	10	15	mA
IO Driving Current	I _{Gpio}		4	5	8	mA
Light Load Shut Down Detect Time	T _{loadD}	The load current is continuously less than 50	27	30	33	s
Light Load Shut Down Current	I _{plout}	VBAT=3.7V	20	50	70	mA
Short Press On Key Wake Up Time	T _{OnDebounce}		100		300	ms
Long Press On Key Wake Up Time	$T_{Keylight}$		2		3	S

Thermal Shut Down Temperature	T _{OTP}	Rising temperature	130	140	150	°C
Thermal Shut Down Hysteresis	ΔT_{OTP}		30	40	50	°C

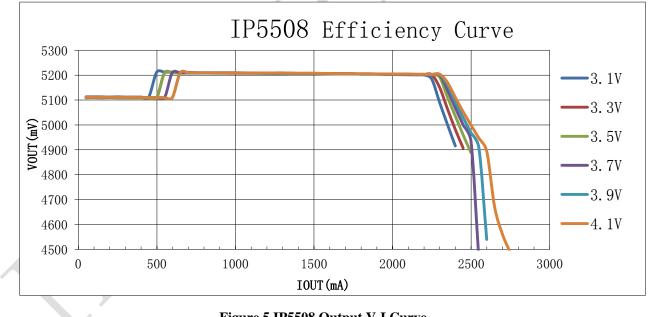
9. Function Description

System Diagram




Figure 3 IP5508 Internal System Diagram

Boost


IP5330 integrates a boost dc-dc converter with 5V/2.4A output. Switching frequency: 500KHz; input: 3.7V; efficiency @ 5V/1A output: 94%. Built-in soft start function, to prevent the shock current at the start. Integrated output over current, short circuit, over voltage, over temperature and other protections, to ensure the system stable and reliable. The output current of the boost system can be automatically adjusted with the temperature to

ensure that the IC is below the setted temperature.

Figure 5 IP5508 Output V-I Curve

Charge

IP5508 has a constant current, constant voltage lithium battery charger with a synchronous switch structure. When the battery voltage is less than 3v, 200mA slip current charging is used; when the battery voltage is greater than 3V, it enters constant current charging, and the VIN input current limiting loop works; when the battery

voltage is greater than 4.2V/4.3V/4.35V/4.4V, it enters constant voltage charging. After the charging is completed, if the battery voltage is lower than 4.1V, restart the battery charging

IP5508 supports 5V/2A charging current, and simultaneously detects the input voltage and IC temperature to automatically adjust the charging current.

IP5508 has built-in power path management, supports charging and discharging while charging. Turn on the PMOS tube of input VIN and output VOUT to charge external devices. At the same time, IP5508 will detect whether the VOUT output voltage is high voltage 4.55V. Charge the battery cell with the maximum current. If it is lower than 4.55V, the charging current will be reduced to automatically adapt to the load output capacity of the adapter. The PMOS tube with input VIN and output VOUT when IP5508 is charging and discharging has the functions of over temperature, 3A over current, short circuit protection and so on. When charging and discharging, priority is given to charging external loads such as mobile phones, and then charging the internal battery of the mobile power supply.

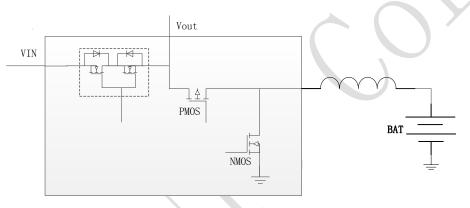


Figure 6 Schematic diagram of IP5508 path management

ure	in or buttery	vonage				
	Vset[2:1]	R14	R15	R16	R18	Battery voltage
	2b00	NC	0R	NC	0R	4.20V
	2b01	NC	0R	0R	NC	4.30V
	2b10	0R	NC	NC	0R	4.35V
	2b11	0R	NC	0R	NC	4.40V

The configuration of battery voltage:

Note: When actually PCB layout, R14/R15/R16/R18 can be omitted, just short to Vcc or GND.

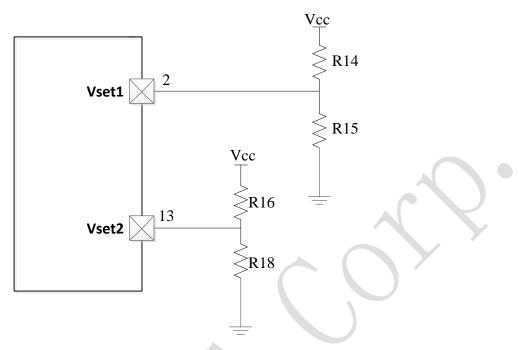
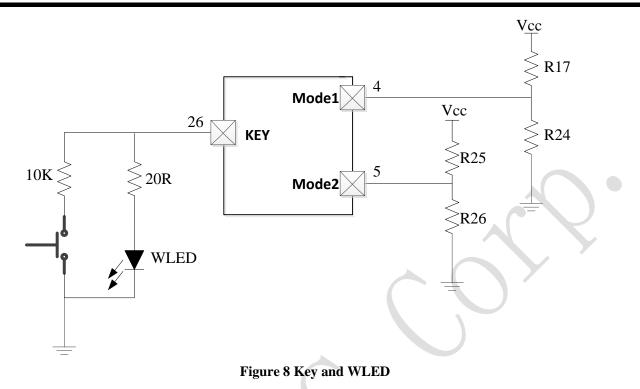


Figure 7 Vset battery voltage configuration circuit


Key and WLED

IP5330 has built-in Key and WLED function, which supports external PIN selection, Key startup & shutdown and switch lighting. Specific reference is as follows:

Mode[2:1]	R17	R24	R25	R26	Key mode description
2b00	NC	0R	NC	0R	Short press to boost ,short press twice to power off, long
					press 2s to switch WLED
2b01	NC	0R	0R	NC	Short press to boost, long press to switch WLED, without key
					shutout function
2b10	0R	NC	NC	0R	Short press to boost ,short press twice to switch WLED,
					without key shutout function
2b11	0R	NC	0R	NC	Short press to boost, short press twice to switch WLED ,long
					press to shut out

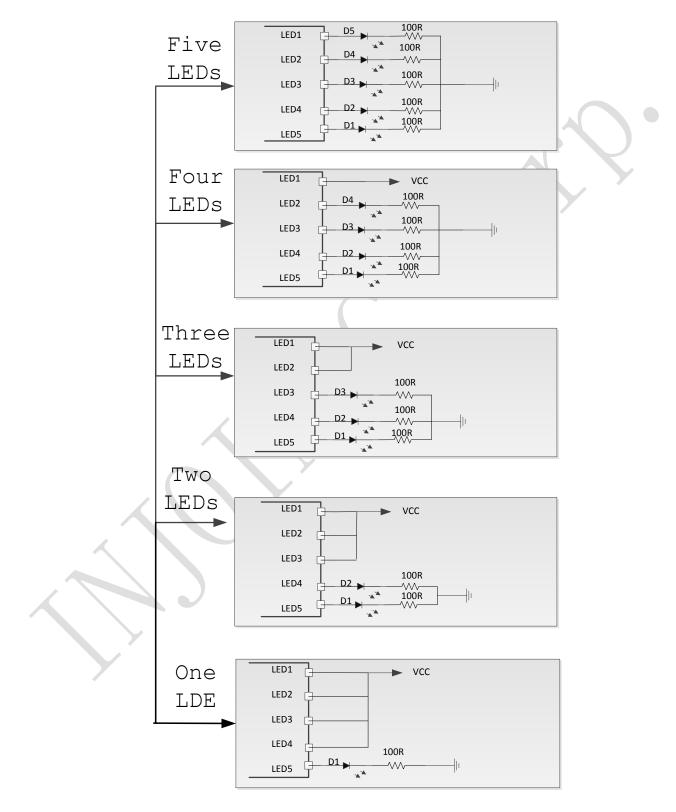
Note: When actually PCB layout, R17/R24/R25/R26 can be omitted, just short to Vcc or GND.

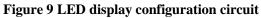
Coulombmeter and battery level display

P5508 has built-in accurate coulomb electricity meter algorithm, according to the battery capacity accurately display the remaining battery power.

IP5508 can be customized to support LED lamp, type 88, type 188, type 888 digital tube and other power display.

The specific corresponding models are as follows:


IP5508_BZ_LED Support 1/2/3/4/5 LEDs


IP5508_BZ_188 Support 5pin188 type digital tube (if you need to support other types of digital tube, please inquire our sales or FAE)

LED Display Mode

Five LEDs mode

Boost

SOC(%)	D1	D2	D3	D4	D5
C≥80%	ON	ON	ON	ON	ON
60%≤C<80%	ON	ON	ON	ON	OFF
40%≤C<60%	ON	ON	ON	OFF	OFF
20%≤C<40%	ON	ON	OFF	OFF	OFF
3%≤C<20%	ON	OFF	OFF	OFF	OFF
0% <c<3%< td=""><td>1Hz blink</td><td>OFF</td><td>OFF</td><td>OFF</td><td>OFF</td></c<3%<>	1Hz blink	OFF	OFF	OFF	OFF

Charge

SOC(%)	D1	D2	D3	D4	D5
Full	ON	ON	ON	ON	ON
C≥80%	ON	ON	ON	ON	0.5Hz blink
60%≤C<80%	ON	ON	ON	0.5Hz blink	OFF
40%≤C<60%	ON	ON	0.5Hz blink	OFF	OFF
20%≤C<40%	ON	0.5Hz blink	OFF	OFF	OFF
<20%	0.5Hz blink	OFF	OFF	OFF	OFF

Four LEDs mode

Boost

	SOC(%)	D1	D2	D3	D4
	C≥75%	ON	ON	ON	ON
	50%≤C<75%	ON	ON	ON	OFF
	25%≤C<50%	ON	ON	OFF	OFF
	3%≤C<25%	ON	OFF	OFF	OFF
	0% <c<3%< td=""><td>1Hz blink</td><td>OFF</td><td>OFF</td><td>OFF</td></c<3%<>	1Hz blink	OFF	OFF	OFF
Charge					
	SOC(%)	D1	D2	D3	D4
	Full	ON	ON	ON	ON
	75%≤C	ON	ON	ON	0.5Hz blink
	50%≤C<75%	ON	ON	0.5Hz blink	OFF
	25%≤C<50%	ON	0.5Hz blink	OFF	OFF
	C<25%	0.5Hz blink	OFF	OFF	OFF

IP5508

Three LEDs mode

Boost

SOC(%)	D1	D2	D3
C≥66%	ON	ON	ON
33%≤C<66%	ON	ON	OFF
3%≤C<33%	ON	OFF	OFF
0% <c<3%< td=""><td>1Hz blink</td><td>OFF</td><td>OFF</td></c<3%<>	1Hz blink	OFF	OFF

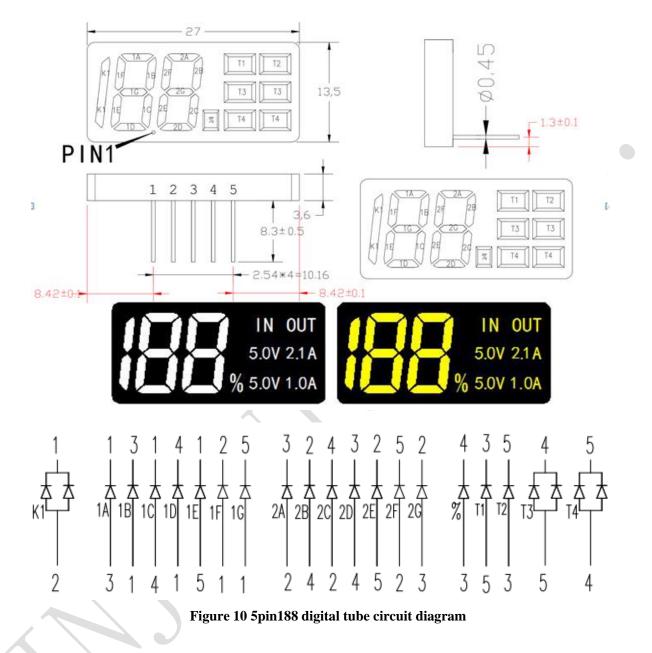
Charge

SOC(%)	D1	D2	D3
75%≤C	ON	ON	ON
66%≤C<100%	ON	ON	0.5Hz blink
33%≤C<66%	ON	0.5Hz blink	OFF
C<33%	0.5Hz blink	OFF	OFF

Two LEDs mode

	State	D1	D2
Charge	In charging	0.5Hz blink	OFF
	Full	ON	OFF
discharge	In discharging	OFF	ON
	Low Battery	OFF	1Hz blink

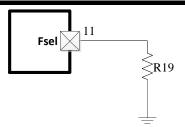
One LED mode


	State	D1
Charge	In charging	0.5Hz blink
	Full	ON
discharge	In discharging	ON
	Low Battery	1Hz blink

Digital Tube Mode

Digital Tuba	ch	arge	boost	
Digital Tube	In charging	Full	SOC<5%	SOC>5%
5pin 188 mode	0-99% Always bright		Single digit	Always bright
	"IN"0.5HZblink 100%		1HZblink 0-5%	5%-100%

The schematic diagram of 5pin188 digital tube is as follows:

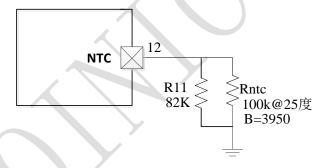


Coulombmeter

IP5508 supports the external setting of the initial capacity of the battery. The residual capacity of the battery can be managed by integrating the current and time of the battery end, which can accurately display the current capacity of the battery. At the same time, IP5508 supports a complete charging process from 0% to 100% to automatically calibrate the total capacity of the current battery, so as to manage the actual capacity of the battery more reasonably.

IP5508 initial capacity formula setted by external PIN: battery capacity=R19*0.2 (mAH) (Max: 25000mAH)

Figure 11 Battery capacity configuration circuit diagram


Auto Detection On Phone Attachment And Enter Standby Mode Automatically With Light Load

After IP5508 detects the phone's insertion, it will immediately wake up from standby mode and turn on the boost 5V to charge the phone.

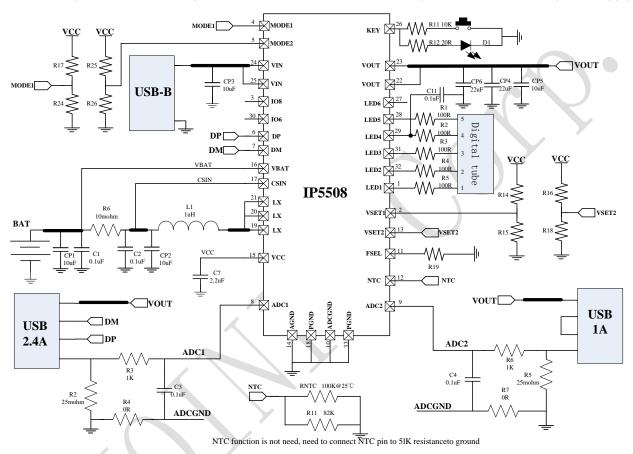
IP5508 automatically enters standby state when Vout end load current is less than 50mA and lasts for 30s.

NTC

IP5508 integrated NTC, and can detect battery pack temperature. IP5508's NTCPIN will output 20uA current, then detect the voltage of NTC PIN to determine the temperature of the battery

Charge:

If NTC pin voltage>1.32V, it indicate the battery temperature is below 0° C ,charger is stopped. If NTC pin voltage<0.56V, it indicate the battery temperature is higher 45° C ,half charging current is used. If NTC pin voltage<0.49V, it indicate the battery temperature is higher 50° C ,charger is stopped. Discharge:

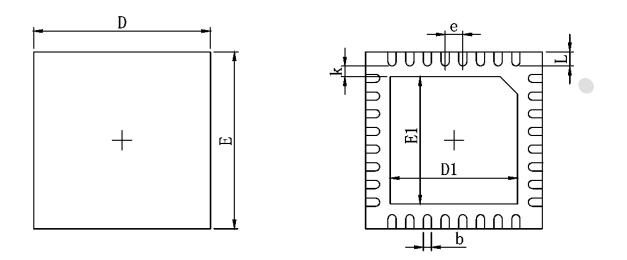

If NTC pin voltage>1.44V, it indicate the battery temperature is below -10° C, Output will be shutoff. If NTC pin voltage<0.43V, it indicate the battery temperature is higher55° C, Output will be shutoff. If NTC function is not needed, the NTC pin should connect a 51K resistor to GND. The NTC pin cannot float otherwise may lead to abnormal.

VCC

VCC is a normally opened 3.1V LDO. Load capacity is 50mA.

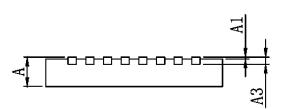
10.Typical Application Diagram

IP5508 only needs inductors, capacitors and resistors to realize the complete scheme of mobile power supply.


Figure 12 Typical application principle diagram of IP5508 digital tube application Recommended model of inductance : SPM70701R0

DARFON PIN	Inductance (uH)	uctance Tolerance (DC Resistance (mΩ)	Heat Rating Current DC Amp.	Saturation Current DC Amps.	Measuring Condition	
			Тур.	Max.	ldc(A)Max.	Isat(A)Max.	
SPM70701R0	1.0	±20%	8.5	8	12	15	
Recommended models of lithium battery protection IC							

INJOINIC	Pack age	Overcharge Detection Voltage [VCU] (V)	Overdischarge Detection Voltage [VDL] (V)	Overcurrent Detection Current [IOV] (A)
IP3005A	ESOP8	4.28V	2.5V	7A


11. Package information

BOTTOM

VIEW

TOP VIEW

SID	ΕV	'IEW

C: mah a l	Dimensions I	n Millimeters	Dimension	s In Inches
Symbol	Min.	Max.	Min.	Max.
А	0.700	0.800	0.028	0.031
A1	0.000	0.050	0.000	0.002
 A3	0.203	REF.	0.008	REF.
D	4.924	5.076	0.194	0.200
E	4.924	5.076	0.194	0.200
D1	3.300	3.500	0.130	0.138
E1	3.300	3.500	0.130	0.138
k	0.200	DMIN.	0.008	BMIN.
d	0.200	0.300	0.008	0.012
e	0.500TYP.		0.020	TYP.
L	0.324	0.476	0.013	0.019

IMPORTANT NOTICE

INJOINIC TECHNOLOGY and its subsidiaries reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to INJOINIC TECHNOLOGY's terms and conditions of sale supplied at the time of order acknowledgment.

INJOINIC TECHNOLOGY assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using INJOINIC TECHNOLOGY's components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of INJOINIC TECHNOLOGY's components in its applications, notwithstanding any applications-related information or support that may be provided by INJOINIC TECHNOLOGY. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify INJOINIC TECHNOLOGY and its representatives against any damages arising out of the use of any INJOINIC TECHNOLOGY's components in safety-critical applications.

Reproduction of significant portions of INJOINIC TECHNOLOGY's information in INJOINIC TECHNOLOGY's data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. INJOINIC TECHNOLOGY is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

INJOINIC TECHNOLOGY will update this document from time to time. The actual parameters of the product may vary due to different models or other items. This document voids all express and any implied warranties.

Resale of INJOINIC TECHNOLOGY's components or services with statements different from or beyond the parameters stated by INJOINIC TECHNOLOGY for that component or service voids all express and any implied warranties for the associated INJOINIC TECHNOLOGY's component or service and is an unfair and deceptive business practice. INJOINIC TECHNOLOGY is not responsible or liable for any such statements.