

Fully-integrated power bank System-On-Chip with 1.2A charger, 1.0A boost converter

1 Features

Synchronous switching charger and synchronous boost converter

- 1.2A synchronous switching charger, 1.0A synchronous boost converter
- ♦ boost converter efficiency up to 91%
- ♦ Switching charger efficiency up to 93%
- Integrated power-path management, charging batteries and charging cellphones at the same time

Charger

- Adaptive charging current control, excellent adapter compatibility
- ♦ Support 4.20V,4.30V,4.35V,4.40V batteries

Power display

Fully featured

- ♦ Integrated Key ON/OFF
- ♦ Integrated flashlight controller
- Integrated cellphone plug-in and plug-out detector

Low power

- Smart load detector, switching to standby mode automatically
- <100 μA standby current</p>

Ultra simplified BOM

 Integrated power FET, charging/boosting with a single inductor

Multiple protections, high reliability

- Output over-current, over-voltage, short-circuit protection
- Input over-voltage, over-current, battery over-charge, over-drain, over-current protection
- ♦ Thermal regulation and thermal shutdown,

♦ ESD 4KV

2 Applications

- Power bank, Portable Charger
- Mobile Phones, Smart Phones, Handheld Devices,

3 Description

IP5305T is a highly-integrated multi-function power management SOOC. It integrates a boost converter, a Li battery charger management system and a battery state of charge indicate controller. It provides a turn-key solution for power bank and portable charger applications.

IP5305T's high integration and rich features make the minimized component number in application. It can effectively downsize the application and lower the BOM cost.

IP5305T only needs a single inductor to realize step-down and step-up.

IP5305T's synchronous boost system provides 1.0A output current with a conversion efficiency as high as 91%. When no-load, it automatically enters the sleep state, and the quiescent current drops to 100uA. +

IP5305T adopts switch charging technology, provides 1.2A current, and the charging efficiency is as high as 92%. Built-in IC temperature and input voltage intelligently adjust the charging current.

IP5305T supports 1, 2, 3, 4 LED power display. IP5305T is available in ESOP8 package.

IP5305T

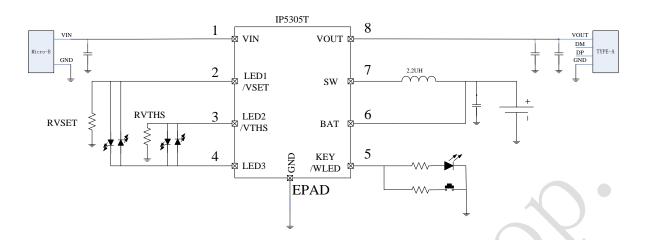


Figure 1 Simplified application schematic (4 LEDs as the SOC indicator)

4 Pin definition

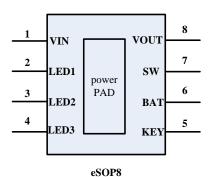
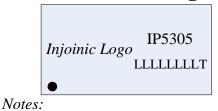



Figure 2 IP5305T Pin Diagram

Pin name	Pin number	Pin description
VIN	1	DC5V input pin
LED1	2	LED drive pin1
LED2	3	LED drive pin2
LED3	4	LED drive pin3
KEY	5	Input key pin
BAT	6	Battery pin, connect to Li+ battery.
SW	7	DCDC switch node
VOUT	8	Boost 5V output PIN
PowerPAD		Connecte to GND

5 Silk screen description

TOP Marking

IP5305: Part Number LLLLLLL: Lot ID T: Combined with

IP5305 to IP5305T

6 IP serials power bank IC selection table

				Main features			Pa	ackage	
IC Model	Boost	Charger	LED	Light	Push Button	I2C	DCP	Package	Package
	Doost	Charger	Num	Light	I usii Duttoii	12C			compatibility
IP5101	1.0A	1.0A	1,2	-	-	_	-	eSOP8	
IP5305T	1.0A	1.2A	1,2,3,4	√	√	-	_	eSOP8	
IP5206	2A(Max)	1.5A	3,4,5	√	√	ı	ı	eSOP16	
IP5108E	2.0A	1.0A	3,4,5	√	√	ı	ı	eSOP16	PIN2PIN
IP5108	2.0A	2.0A	3,4,5	→	√	√	ı	eSOP16	
IP5207	1.2A	1.2A	3,4,5	√	√	→	√	QFN24	
IP5109	2.1A	2.1A	3,4,5	√	√	√	ı	QFN24	PIN2PIN
IP5209	2.4A	2.1A	3,4,5	1	√	√	√	QFN24	

7 Absolute maximum ratings

Parameter	symbol	value	Unit
Port input voltage range	V _{IN}	-0.3 ~ 6	V
Operating free-air temperature range	T _A	-40 ~ 150	င
Junction temperature	TJ	-40 ~ 150	ပ
Storage temperature	Tstg	-60 ~ 150	೮
Thermal resistance (from junction to ambient air)	θ_{JA}	50	°C/ W
Human-body model (HBM)	ESD	4	KV

^{*} Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device.

These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

8 Recommended operation conditions

Parameter	symbol	MIN	Typical	MAX	Unit
Input voltage	V _{IN}	4.65	5	5.5	V
Load current	1	0	1.0		А
Operating ambient temperature	T _A	-20		70	$^{\circ}$

^{*}Beyond these operation conditions, the device's performance will not be guaranteed

9 Electrical Characteristics

TA=25°C, L=2.2uH unless otherwise noted

Parameter	symbol	Test condition	MIN	TYP	MAX	Unit
Charger system						
Input voltage	V _{IN}		4.65	5	5.5	V
Input over voltage	V _{INOVP}		5.5	5.6	5.7	V
Target charge voltage	V_{TRGT}		4.15	4.2	4.25	V
Charge current	I _{CHRG}			1.2	1.4	Α
Trickle charge current	I _{TRKL}	VIN=5V, BAT=2.7V	50	100	300	mA
Trickle charge stop voltage	V_{TRKL}		2.9	3	3.1	V
Recharge threshold	V_{RCH}		4.05	4.1	4.15	V
Charger safety timer	T _{END}	Boosting timed out.	10	12	14	Hour
Boost system						
Battery operation voltage	V_{BAT}		3.0	3.7	4.4	V
Low Battery voltage	V_{BATLOW}	IOUT=0.5A	2.85	2.95	3.05	V
Battery operation current	I _{BAT}	VBAT=3.7V , VOUT=5.0V , fs=350KHz	1	3	15	mA
DC-DC output voltage	V _{оит}	VBAT=3.7V IOUT=1A	4.75	5.0	5.25	V
Output voltage ripple	ΔV _{OUT}	VBAT=3.7V , VOUT=5.0V , fs=350KHz	20	50	100	mV
Boost output current	I _{vout}	VBAT=3.7V	0	1	1.8	Α
Load over-current detect timer	T_UVD	Output voltage continuously lower than 4.2V	20	30	40	ms
Load short-circuit detect timer	T _{OCD}	Output current continuously larger than 2.0A	100	150	200	us
Control system						
Switching frequency	£_	VABT=3.7V	250	350	450	KHz
Boosting frequency	fs	VIN=5V,VBAT=3.7V	600	700	800	KHz
PMOS on resistance			70	80	90	mΩ
NMOS on resistance	r _{dson}		60	70	80	mΩ
VIN and VOUT path's PMOS on-resistance.	23011	VIN=5V	200	250	300	mΩ

IP5305T

Battery standby current	I _{STB}	VIN=0V, VBAT=3.7V	50	100	150	uA
LED lighting current	llight		5	20	30	mA
LED indicator current	l _{L1}		2	10	15	mA
Load removal detect timer	T _{loadD}	Load current continuously lower than 45mA	24	32	40	S
Push-button wake-up timer	T _{OnDebounc}		30	50	100	ms
Push-button light-on timer	T _{Keylight}		1.2	2	_3	S
Thermal shutdown	T _{OTP}	Rising temperature	110	125	140	$^{\circ}$
Thermal shutdown hysteresis	ΔΤ _{ΟΤΡ}		30	40	50	$^{\circ}$

10 LED Display Mode

Boosting mode 4 LEDs as the indicator

C (%)	L1	L2	L3	L4
C≥75%	ON	ON	ON	ON
50%≤C<75%	ON	ON	ON	OFF
25%≤C<50%	ON	ON	OFF	OFF
3%≤C<25%	ON	OFF	OFF	OFF
0% <c<3%< td=""><td>1Hz blink</td><td>OFF</td><td>OFF</td><td>OFF</td></c<3%<>	1Hz blink	OFF	OFF	OFF

Charging mode 4 LEDs as the indicator

<u>- 3 3 </u>				
C (%)	L1	L2	L3	L4
Full	ON	ON	ON	ON
75%≤C	ON	ON	ON	0.5Hz blink
50%≤C<75%	ON	ON	0.5Hz blink	OFF
25%≤C<50%	ON	0.5Hz blink	OFF	OFF
C<25%	0.5Hz blink	OFF	OFF	OFF

The displays of 3 LEDs and 5 LEDs are similar to that of 4 LEDs. The corresponding SOC of each LED is presented in the following table.

	D1	D2	D3	D4
3 LEDs	33%	66%	100%	NA
4 LEDs	25%	50%	75%	100%

■ 2 LED

	state	LED1	LED2
Charging	In charging	0.5Hz blink	OFF
	End of Charge	ON	OFF
Boost	In discharging	OFF	ON
	Low Battery	OFF	1Hz blink

■ 1 LED

	state	LED1
Charging	In charging	0.5Hz blink
	End of Charge	ON
Boost	In discharging	ON
	Low Battery	1Hzblink

11 Push Button

Push button's connecting is shown in Fig 5. IP5305T can identify long push and short push.

- If button is pushed longer than 30ms but shorter than 2s, IP5305T will identify the action as short push. Short push will open SOC indicator LEDs and step-up converter
- If button is pushed longer than 2s, IP5305T will identify the action as long push. Long push will close step-up convertor, SOC indicator LED and flashlight LED.
- If button is pushed shorter than 30ms, IP5305T will ignore the action.
- If two short push is detected within 1s, IP5305T will open or close flashlight LED

12 IP5305T battery type selection

IP5305T supports 4.2V, 4.3V, 4.35V, 4.4V battery types. Select the corresponding battery type by pulling down different resistance values on LED1 (pin 2) of IP5305T, which is multiplexed with LED display output, as shown in Figure 3 (in all light modes, different pull-down resistors can be connected through LED1) To select the battery type):

Battery type selection	IP5305T's LED1 RVSET
4.2V	NC
4.3V	43K 1%
4.35V	75K 1%
4.4V	100K 1%

13 IP5305T battery platform selection

IP5305T can select different battery power display thresholds by pulling down resistors (RVTHS) with different resistance values on LED2 (pin 3) (only valid when 4 power indicator lights). The connection is shown in Figure 3.

The following table lists the relationship between the power indicator status and the battery voltage when the resistance of different RVTHS is different. It should be noted that the turn-on voltage (OCV) in the table is not the actual battery voltage, but after the battery internal resistance compensation is calculated. The voltage is calculated as follows:

When charging, the turn-on voltage (OCV) = the actual battery voltage (the voltage to ground on the P5305TBAT (pin 6))-IBAT (the battery-side charging current measured by IP5305T) * RSET (the cell charging compensation resistor set by IP5305T); During discharge, the turn-on voltage (OCV) = the actual battery voltage (the voltage to ground on the P5305TBAT (pin 6)) + IBAT (the battery

terminal discharge current measured by IP5305T) * RSET (the cell discharge compensation resistor set by IP5305T);

4 LEDS Boost and Charge OCV Threshold Boost OCV Threshold

	RVTHS	Boost LED	Boost turn light	Boost turn light
	Resistance	State	voltage (OCV	voltage (OCV
			threshold)	threshold)
Threshold one.	20K 1%	4 LEDS turn 3 LEDS	3.84V	3.9V
		3 LEDS turn 2 LEDS	3.66V	3.69V
		2 LEDS turn 1 LED	3.54V	3.6V
Threshold two.	43K 1%	4 LEDS turn 3 LEDS	3.9V	3.9V
		3 LEDS turn 2 LEDS	3.72V	3.72V
		2 LEDS turn1 LED	3.6V	3.6V
Threshold three	75K 1%	4 LEDS turn 3 LEDS	3.9V	3.9V
		3 LEDS turn 2 LEDS	3.75V	3.75V
		2 LEDS turn 1 LED	3.6V	3.6V
Threshold four	100K 1%	4 LEDS turn 3 LEDS	3.96V	3.96V
		3 LEDS turn 2 LEDS	3.78V	3.78V
		2 LEDS turn 1 LED	3.67V	3.67V
Threshold five.	NC	4 LEDS turn 3 LEDS	3.96V	3.96V
		3 LEDS turn 2 LEDS	3.84V	3.84V
		2 LEDS turn 1 LED	3.72V	3.72V

14 Typical application schematic

IP5305T only needs capacitors, resistors, and inductors to realize a full featured power bank solution.

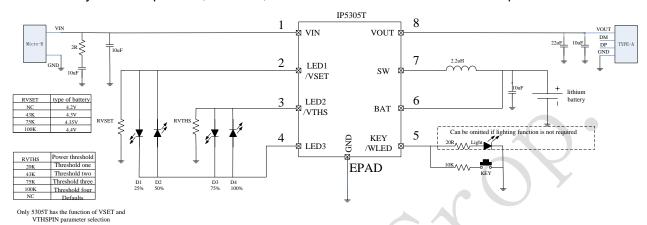


Figure 3 4 LEDs SOC indicator typical application schematic

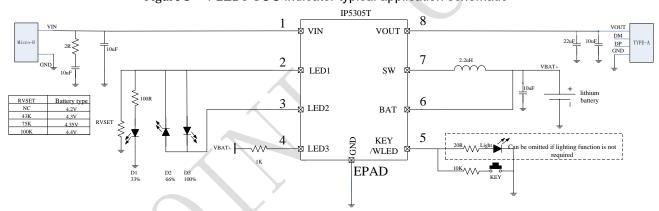


Figure 4 3 LEDs SOC indicator typical application schematic

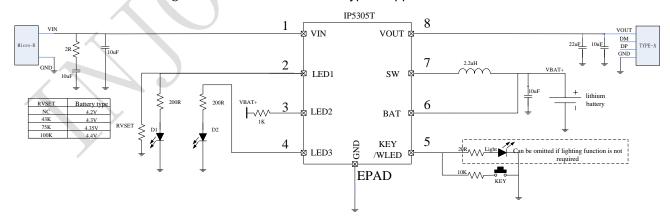


Figure 5 2 LEDs SOC indicator typical application schematic

IP5305T

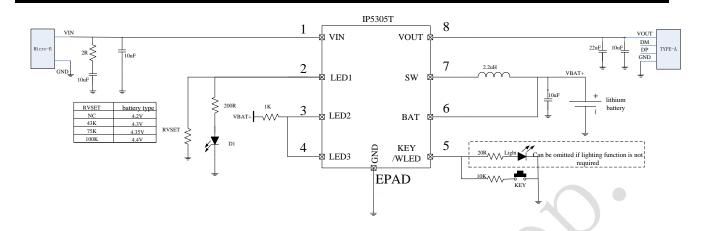
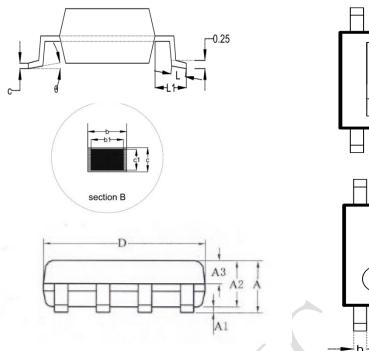
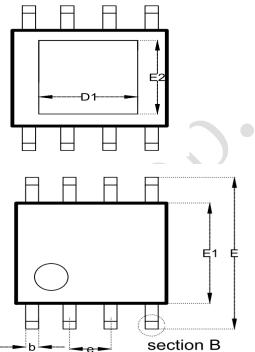




Figure 3 1 LEDs SOC indicator typical application schematic

15 Package Information

SYMBOL	MILLIMETER			
STIVIBUL	MIN	NOM	MAX	
A			1.65	
A1	0.05		0.15	
A2	1.30	1.40	1.50	
А3	0.60	0.65	0.70	
b	0.39		0.48	
b1	0.38	0.41	0.43	
С	0.21		0.25	
c1	0.19	0.20	0.21	
D	4.70	4.90	5.10	
E	5.80	6.00	6.20	
E1	3.70	3.90	4.10	
е	1.27BSC			
L	0.50	0.60	0.80	
L1	1.05BSC			
θ	0		8º	
D1		3.10		
E2		2.21		

IMPORTANT NOTICE

INJOINIC TECHNOLOGY and its subsidiaries reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to INJOINIC TECHNOLOGY's terms and conditions of sale supplied at the time of order acknowledgment.

INJOINIC TECHNOLOGY assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using INJOINIC TECHNOLOGY's components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of INJOINIC TECHNOLOGY's components in its applications, notwithstanding any applications-related information or support that may be provided by INJOINIC TECHNOLOGY. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify INJOINIC TECHNOLOGY and its representatives against any damages arising out of the use of any INJOINIC TECHNOLOGY's components in safety-critical applications.

Reproduction of significant portions of INJOINIC TECHNOLOGY's information in INJOINIC TECHNOLOGY's data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. INJOINIC TECHNOLOGY is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

INJOINIC TECHNOLOGY will update this document from time to time. The actual parameters of the product may vary due to different models or other items. This document voids all express and any implied warranties.

Resale of INJOINIC TECHNOLOGY's components or services with statements different from or beyond the parameters stated by INJOINIC TECHNOLOGY for that component or service voids all express and any implied warranties for the associated INJOINIC TECHNOLOGY's component or service and is an unfair and deceptive business practice. INJOINIC TECHNOLOGY is not responsible or liable for any such statements.